0-1背包问题

给你一个可装载重量为W的背包和N个物品,每个物品有重量和价值两个属性。其中第i个物品的重量为wt[i],价值为val[i],现在让你用这个背包装物品,最多能装的价值是多少?

举个简单的例子,输入如下:

1
2
3
N = 3, W = 4
wt = [2, 1, 3]
val = [4, 2, 3]

算法返回 6,选择前两件物品装进背包,总重量 3 小于W,可以获得最大价值 6。

题目就是这么简单,一个典型的动态规划问题。这个题目中的物品不可以分割,要么装进包里,要么不装,不能说切成两块装一半。这也许就是 0-1 背包这个名词的来历。

动规标准套路

第一步要明确两点,「状态」和「选择」

先说状态,如何才能描述一个问题局面?只要给定几个可选物品和一个背包的容量限制,就形成了一个背包问题,对不对?所以状态有两个,就是「背包的容量」和「可选择的物品」

再说选择,也很容易想到啊,对于每件物品,你能选择什么?选择就是「装进背包」或者「不装进背包」嘛

明白了状态和选择,动态规划问题基本上就解决了,只要往这个框架套就完事儿了:

1
2
3
4
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 择优(选择1,选择2...)

第二步要明确dp数组的定义.

dp数组是什么?其实就是描述问题局面的一个数组。换句话说,我们刚才明确问题有什么「状态」,现在需要用dp数组把状态表示出来。

首先看看刚才找到的「状态」,有两个,也就是说我们需要一个二维dp数组,一维表示可选择的物品,一维表示背包的容量。

dp[i][w]的定义如下:对于前i个物品,当前背包的容量为w,这种情况下可以装的最大价值是dp[i][w]

比如说,如果 dp[3][5] = 6,其含义为:对于给定的一系列物品中,若只对前 3 个物品进行选择,当背包容量为 5 时,最多可以装下的价值为 6。

PS:为什么要这么定义?便于状态转移,或者说这就是套路,记下来就行了。建议看一下我们的动态规划系列文章,几种动规套路都被扒得清清楚楚了。

根据这个定义,我们想求的最终答案就是dp[N][W]。base case 就是dp[0][..] = dp[..][0] = 0,因为没有物品或者背包没有空间的时候,能装的最大价值就是 0。

细化上面的框架:

1
2
3
4
5
6
7
8
9
10
11
int dp[N+1][W+1]
dp[0][..] = 0
dp[..][0] = 0

for i in [1..N]:
for w in [1..W]:
dp[i][w] = max(
把物品 i 装进背包,
不把物品 i 装进背包
)
return dp[N][W]

第三步,根据「选择」,思考状态转移的逻辑

简单说就是,上面伪码中「把物品i装进背包」和「不把物品i装进背包」怎么用代码体现出来呢?

这一步要结合对dp数组的定义和我们的算法逻辑来分析:

先重申一下刚才我们的dp数组的定义:

dp[i][w]表示:对于前i个物品,当前背包的容量为w时,这种情况下可以装下的最大价值是dp[i][w]

如果你没有把这第i个物品装入背包,那么很显然,最大价值dp[i][w]应该等于dp[i-1][w]。你不装嘛,那就继承之前的结果。

如果你把这第i个物品装入了背包,那么dp[i][w]应该等于dp[i-1][w-wt[i]] + val[i]

首先,由于i是从 1 开始的,所以对valwt的取值是i

dp[i-1][w-wt[i]]也很好理解:你如果想装第i个物品,你怎么计算这时候的最大价值?换句话说,在装第i个物品的前提下,背包能装的最大价值是多少?

显然,你应该寻求剩余重量w-wt[i]限制下能装的最大价值,加上第i个物品的价值val[i],这就是装第i个物品的前提下,背包可以装的最大价值。

综上就是两种选择,我们都已经分析完毕,也就是写出来了状态转移方程,可以进一步细化代码:

1
2
3
4
5
6
7
for i in [1..N]:
for w in [1..W]:
dp[i][w] = max(
dp[i-1][w],
dp[i-1][w - wt[i]] + val[i]
)
return dp[N][W]

最后一步,把伪码翻译成代码,处理一些边界情况

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
int knapsack(int W, int N, vector<int>& wt, vector<int>& val) {
// vector 全填入 0,base case 已初始化
vector<vector<int>> dp(N + 1, vector<int>(W + 1, 0));
for (int i = 1; i <= N; i++) {
for (int w = 1; w <= W; w++) {
if (w - wt[i-1] < 0) {
// 当前背包容量装不下,只能选择不装入背包
dp[i][w] = dp[i - 1][w];
} else {
// 装入或者不装入背包,择优
dp[i][w] = max(dp[i - 1][w - wt[i-1]] + val[i-1],
dp[i - 1][w]);
}
}
}

return dp[N][W];
}

优化空间复杂度

注意到每个状态f(i,j)只与之前的状态f(i-1,j)f(i-1,j-save[i])有关.实际上开一个二维数组是不必要的,完全可以开一个一维数组下标为j,然后循环递推n次.

f(j)=max(f(j),f(j-save[i])+value[i]),但是正向循环是错误的,因为之前的j-save[i]已经被新状态所覆盖,换句话说逆序的话能保证是从dp[i-1][j-w[i]]得出的结果, 而正序的话对应的是dp[i][j-w[i]].

1
2
3
for (int i = 1; i <= n; i++)
for (int j = V; j >= w[i]; j--)
f[j] = max(f[j], f[j - w[i]] + v[i]);

初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求”恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。这两种问法的区别是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1…V]均设为−∞,这样就可以保证最终得到的f[N]]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0…V]全部设为0。
为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是−∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

-------------本文结束感谢您的阅读-------------
可以请我喝杯奶茶吗