jz62.圆圈中最后剩下的数字

题目描述

题解

模拟链表

如果使用链表的话由于遍历过程花费巨大, 会造成超出时间限制的情况, 所以这道题使用列表来模拟链表

假设当前删除的位置是 idx,下一个删除的数字的位置是 idx + m 。但是,由于把当前位置的数字删除了,后面的数字会前移一位,所以实际的下一个位置是 idx + m - 1。由于数到末尾会从头继续数,所以最后取模一下,就是 (idx + m - 1) (mod n)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public int lastRemaining(int n, int m) {
ArrayList<Integer> list = new ArrayList<>(n);
for (int i = 0; i < n; i++) {
list.add(i);
}
int idx = 0;
while (n > 1) {
idx = (idx+m-1)%n;
list.remove(idx);
n--;
}
return list.get(0);

}

数学方法

这么著名的约瑟夫环问题,是有数学解法的!

很明显我们每次删除的是第 m 个数字,我都标红了。

第一轮是 [0, 1, 2, 3, 4] ,所以是 [0, 1, 2, 3, 4] 这个数组的多个复制。这一轮 2 删除了。

第二轮开始时,从 3 开始,所以是 [3, 4, 0, 1] 这个数组的多个复制。这一轮 0 删除了。

第三轮开始时,从 1 开始,所以是 [1, 3, 4] 这个数组的多个复制。这一轮 4 删除了。

第四轮开始时,还是从 1 开始,所以是 [1, 3] 这个数组的多个复制。这一轮 1 删除了。

最后剩下的数字是 3。

图中的绿色的线指的是新的一轮的开头是怎么指定的,每次都是固定地向前移位 m 个位置。

然后我们从最后剩下的 3 倒着看,我们可以反向推出这个数字在之前每个轮次的位置。

最后剩下的 3 的下标是 0。

第四轮反推,补上 m 个位置,然后模上当时的数组大小 2,位置是(0 + 3) % 2 = 1。

第三轮反推,补上 m 个位置,然后模上当时的数组大小 3,位置是(1 + 3) % 3 = 1。

第二轮反推,补上 m 个位置,然后模上当时的数组大小 4,位置是(1 + 3) % 4 = 0。

第一轮反推,补上 m 个位置,然后模上当时的数组大小 5,位置是(0 + 3) % 5 = 3。

所以最终剩下的数字的下标就是3。因为数组是从0开始的,所以最终的答案就是3。

总结一下反推的过程,就是 (当前index + m) % 上一轮剩余数字的个数。

1
2
3
4
5
6
7
8
9
10
class Solution {
public int lastRemaining(int n, int m) {
int ans = 0;
// 最后一轮剩下2个人,所以从2开始反推
for (int i = 2; i <= n; i++) {
ans = (ans + m) % i;
}
return ans;
}
}
-------------本文结束感谢您的阅读-------------
可以请我喝杯奶茶吗