题目描述
题解
模拟链表
如果使用链表的话由于遍历过程花费巨大, 会造成超出时间限制的情况, 所以这道题使用列表来模拟链表
假设当前删除的位置是 idx,下一个删除的数字的位置是 idx + m 。但是,由于把当前位置的数字删除了,后面的数字会前移一位,所以实际的下一个位置是 idx + m - 1。由于数到末尾会从头继续数,所以最后取模一下,就是 (idx + m - 1) (mod n)。
1 | public int lastRemaining(int n, int m) { |
数学方法
这么著名的约瑟夫环问题,是有数学解法的!
很明显我们每次删除的是第 m 个数字,我都标红了。
第一轮是 [0, 1, 2, 3, 4] ,所以是 [0, 1, 2, 3, 4] 这个数组的多个复制。这一轮 2 删除了。
第二轮开始时,从 3 开始,所以是 [3, 4, 0, 1] 这个数组的多个复制。这一轮 0 删除了。
第三轮开始时,从 1 开始,所以是 [1, 3, 4] 这个数组的多个复制。这一轮 4 删除了。
第四轮开始时,还是从 1 开始,所以是 [1, 3] 这个数组的多个复制。这一轮 1 删除了。
最后剩下的数字是 3。
图中的绿色的线指的是新的一轮的开头是怎么指定的,每次都是固定地向前移位 m 个位置。
然后我们从最后剩下的 3 倒着看,我们可以反向推出这个数字在之前每个轮次的位置。
最后剩下的 3 的下标是 0。
第四轮反推,补上 m 个位置,然后模上当时的数组大小 2,位置是(0 + 3) % 2 = 1。
第三轮反推,补上 m 个位置,然后模上当时的数组大小 3,位置是(1 + 3) % 3 = 1。
第二轮反推,补上 m 个位置,然后模上当时的数组大小 4,位置是(1 + 3) % 4 = 0。
第一轮反推,补上 m 个位置,然后模上当时的数组大小 5,位置是(0 + 3) % 5 = 3。
所以最终剩下的数字的下标就是3。因为数组是从0开始的,所以最终的答案就是3。
总结一下反推的过程,就是 (当前index + m) % 上一轮剩余数字的个数。
1 | class Solution { |